Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Chemosphere ; 354: 141671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479682

RESUMO

To address the challenges posed by signal capacity limitations and the reliance of sensing methods on single analytical information, this study developed an electrochemiluminescence (ECL) and colorimetric dual-mode sensing platform for the precise detection of 4-chloroethcathinone (4-CEC) in water environments. Firstly, the accurate alignment of the reflection wavelength of appropriately sized silica inverse opal photonic crystals (SIOPCs) with the ECL emission wavelength of luminescent metal-organic frameworks (PCN-224) has been achieved via diameter modulation. This innovative design, which cleverly utilized the band-edge effect, improved the luminous intensity of the ECL sensor, leading to a significant boost in analytical performance. Secondly, the establishment of a colorimetric detection method for confirming the presence of 4-CEC in samples through visual observation of color changes was achieved by employing an aptamer-based dye displacement reaction, utilizing differential binding affinities between the aptamer and both the sulforhodamine B (SRB) and 4-CEC. Under the optimal experimental conditions, the dual-mode sensor demonstrated ECL detection of limits (LOD) of 2.6 × 10-13 g/L and colorimetric LOD of 6.5 ng/L for 4-CEC. These findings highlighted the tremendous potential of developing streamlined and efficient dual-signal readout platforms using ECL aptamer sensors for the precise determination of other Synthetic cathinones (SCs) in water environments.


Assuntos
Técnicas Biossensoriais , Colorimetria , Catinona Sintética , Medições Luminescentes/métodos , Dióxido de Silício , Técnicas Biossensoriais/métodos , Limite de Detecção , Água , Técnicas Eletroquímicas/métodos
2.
Phys Chem Chem Phys ; 26(12): 9096-9111, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456310

RESUMO

As one of the most promising energy storage devices, supercapacitors exhibit a higher power density than batteries. However, its low energy density usually requires high-performance electrode materials. Although the RuO2 material shows desirable properties, its high cost and toxicity significantly limit its application in supercapacitors. Recent developments demonstrated that Co-based materials have emerged as a promising alternative to RuO2 for supercapacitors due to their low cost, favorable redox reversibility and environmental friendliness. In this paper, the morphological control and performance engineering of Co-based materials are systematically reviewed. Firstly, the principle of supercapacitors is briefly introduced, and the characteristics and advantages of pseudocapacitors are emphasized. The special forms of cobalt-based materials are introduced, including 1D, 2D and 3D nanomaterials. After that, the ways to enhance the properties of cobalt-based materials are discussed, including adding conductive materials, constructing heterostructures and doping heteroatoms. Particularly, the influence of morphological control and modification methods on the electrochemical performances of materials is highlighted. Finally, the application prospect and development direction of Co-based materials are proposed.

3.
Analyst ; 149(8): 2291-2298, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38511612

RESUMO

Building a high-performance sensing platform is the key to developing sensitive sensors. Herein, a highly sensitive self-powered electrochemical sensor (SPES) was constructed using a WO3·H2O film as the cathode prepared by a hydrothermal method and Zn as the anode, and it could be applied to sensitive detection of microcystin (MC-RR). The WO3·H2O film with a larger specific surface area could boost the oxygen reduction reaction (ORR), which could achieve signal amplification and significantly increase the sensitivity of the sensors. Under the optimal conditions, there was a good linear relationship between the increased electrical power density and the logarithm of MC-RR concentration with a detection limit of 1.31 × 10-15 M (S/N = 3). This method had good anti-interference ability and stability when applied to the determination of MC-RR content in actual samples, which could boost the potential application of electrochemical sensors in the field of environmental monitoring.

4.
Analyst ; 149(6): 1746-1752, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38349197

RESUMO

In this work, the supersensitive and selective determination of lincomycin (Lin) was achieved using a novel electroluminescent (ECL) aptasensor based on the synergistic integration of gold functionalized upconversion nanoparticles (UCNPs) and thiolated 3,4,9,10-perylene tetracarboxylic acid (PTCA). The integration of two luminophores of UCNPs and PTCA combined the merits of the cathodoluminescence stability of UCNPs and the high quantum yield of PTCA, which significantly promoted the ECL signal and analytical performance of the proposed sensor. The introduction of gold nanoparticles in UCNPs can not only improve the conductivity and ECL performance of UCNPs but also cause them to easily integrate with thiolated PTCA (t-PTCA) via an Au-S bond. The ECL signal of UCNPs@Au/t-PTCA/GCE was almost twice as strong as that of t-PTCA/GCE and tenfold higher than that of UCNPs@Au/GCE. Because of the non-conductive protein of the Lin aptamer, the ECL intensity of apt/UCNPs@Au/t-PTCA/GCE noticeably decreased. In the presence of Lin, the aptamer was pulled down from the sensing interface, resulting in the recovery of the ECL intensity of the sensor. Under optimal conditions, our proposed sensor can quantify the concentration of Lin in the range from 1.0 × 10-15 to 1.0 × 10-7 M with a low detection limit of 2.4 × 10-16 M (S/N = 3), exhibiting high sensitivity and specificity for the determination of Lin.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Perileno/análogos & derivados , Nanopartículas Metálicas/química , Ouro/química , Aptâmeros de Nucleotídeos/química , Lincomicina , Técnicas Biossensoriais/métodos , Limite de Detecção , Medições Luminescentes , Técnicas Eletroquímicas/métodos
5.
Phys Chem Chem Phys ; 26(9): 7618-7626, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363116

RESUMO

Poor conductivity of the metal-organic frameworks (MOFs) limits their applications in overall water splitting. Surface sulfur (S) doping transition metal hydroxides would effectively improve the conductivity and adjust the electronic structure to generate additional electroactive sites. Herein, we fabricated a Ni-S/Co-MOF/NF catalyst by electroplating a Ni-S film on the 3D flower-like Co-MOF. Because the 3D flower-like structures are covered in Ni foam, the high exposure of active sites and good conductivity are obtained. Moreover, the synergistic effect between Ni-S and Co-MOF contributes to the redistribution of electrons in the catalyst, which can then optimize the catalytic performance of the material. The obtained 3D flower-like Ni-S/Co-MOF/NF demonstrates excellent activity toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in 1 M KOH, which only requires a low overpotential of 248 mV@10 mA cm-2 for the OER and 127 mV@10 mA cm-2 for the HER, respectively. At a current density of 10 mA cm-2, the Ni-S/Co-MOF/NF‖Ni-S/Co-MOF/NF requires a low cell voltage of 1.59 V to split overall water splitting.

6.
J Fluoresc ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270796

RESUMO

The traditional methods for identifying water sources in coal mines lack the ability to quickly detect water sources and are prone to causing secondary pollution of samples. In contrast, laser induced fluorescence (LIF) technology has been introduced for the identification of coal mine water sources due to its high sensitivity and real-time performance. However, extreme learning machine (ELM) have shortcomings in randomly selecting weights and biases. The Beluga Whale Optimization (BWO) algorithm has efficient optimization capability, global search capability, adaptability and parallelism, and can find the optimal weights and biases in a short time. The combination of LIF technology and BWO-ELM model can be applied to quickly identify the welling water source in coal mine. Select sandstone water and old goaf water from the Huainan mining area as experimental samples, and mix them in different proportions to prepare 7 mixed water samples for testing. Utilize LIF technology to obtain spectral curve images, preprocess them with polynomial smoothing algorithm (SG) and spectral multiple scattering correction (MSC), and perform dimensionality reduction using factor analysis (FA) and linear discriminant analysis (LDA) methods. Finally, construct ELM models, Long Short Term Memory (LSTM) models, BWO-ELM models, and Particle Swarm Optimization Extreme Learning Machine(PSO-ELM) models for the dimensionality reduced data. In order to improve the reliability and accuracy of the results, the experimental results were kept to 5 decimal places. From the experimental results, it can be seen that SG-LDA-BWO-ELM has the best fitting effect, with a fitting coefficient of 0.99990, a root mean square error of 0.00041, a mean square error approaching 0, and an average absolute error of 0.00021. It has the best convergence and the smallest absolute error among all models, making it the most suitable for identifying mine water inrush. It is of great significance for preventing and controlling mine water disasters and ensuring coal mine production safety.

7.
J Obes ; 2023: 7966540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908490

RESUMO

Objective: This study aimed to conduct a coordinate-based meta-analysis (CBMA) to investigate white matter (WM) abnormalities in healthy individuals with overweight or obesity. Methods: A systematic literature search using Web of Science and PubMed datasets was performed. Original investigations that used diffusion tensor imaging (DTI) to explore fractional anisotropy (FA) differences between healthy overweight/obese individuals and normal weight controls were collected. The meta-analysis was conducted using the seed-based d mapping (SDM) software, employing stringent thresholds for significance. Sensitivity analyses and meta-regression analysis were also performed to examine the robustness of the results and explore potential associations with age and body mass index (BMI). Results: The analysis included five studies comprising 232 overweight/obese individuals and 219 healthy normal weight controls. The findings showed that overweight/obese individuals exhibited reduced fractional anisotropy (FA) in specific regions, namely, the right superior longitudinal fasciculus (SLF), the splenium of the corpus callosum (CC), and the right median network, cingulum. Meta-regression analysis further revealed that these FA reductions were associated with age. Conclusion: These findings provided insights into the potential impact of overweight/obesity on cognition, emotion, and neural functions and highlighted the significance of early prevention and intervention for overweight on the basis of neuroimaging.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Sobrepeso , Encéfalo/diagnóstico por imagem , Obesidade/diagnóstico por imagem
8.
Analyst ; 148(23): 6087-6096, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37916516

RESUMO

Nowadays, bacterial resistance caused by the abuse of antibiotics has become a worldwide problem. In this work, a quinolone antibiotic, enrofloxacin (ENR), was rapidly monitored by combining a selective molecular imprinting polymer (MIP) with the electrochemiluminescence (ECL) method. Zn-PTC, a novel zinc-based metal-organic framework (MOF) that has a large specific surface area and ultra-high luminous efficiency, was used as the ECL luminophore. Chitosan (CHIT) was used to contact the specific surface area of molecularly imprinted polymer films and further improved the detection sensitivity. Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the surface of the Zn-PTC and CHIT modified glassy carbon electrode (GCE). The specific sites that could target recombining ENR were shaped on the surface of MIP after extracting the ENR templates. The specific concentrations of ENR could be detected according to the difference in ECL intensity (ΔECL) between the eluting and rebinding of ENR. After optimization, a good linear response of ΔECL and a logarithm of specific ENR concentrations could be obtained in the range of 1.0 × 10-12-1.0 × 10-4 mol L-1, with a detection limit of 9.3 × 10-13 mol L-1 (S/N = 3). Notably, this study provided a rapid, convenient, and cheap method for the detection of ENR in actual samples.


Assuntos
Quitosana , Estruturas Metalorgânicas , Polímeros , Enrofloxacina , Pirróis , Zinco , Antibacterianos
9.
ACS Appl Mater Interfaces ; 15(48): 55369-55378, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987692

RESUMO

Signal amplification is a powerful approach to increasing the detection sensitivity of electrochemiluminescence (ECL). Here, we developed synergistic multieffect catalytic strategies based on CuCo2O4 nanorod combination of Ag NPs as coreaction accelerators to fabricate an efficient covalent organic framework (PTCA-COF)-based ternary ECL biosensor. Concretely, the high redox reversibility of Co3+/Co2+ and Cu2+/Cu+ would constantly promote the decomposition of S2O82- for ECL emission. Meanwhile, the introduction of Ag NPs with excellent electrocatalytic activity further realized multiple amplification of the ECL signal. Furthermore, the good hydrogen evolution reaction (HER) ability of Ag@CuCo2O4 nanorods could accelerate the proton transmission rate of the system to amplify ECL behavior. In the presence of the target synthetic cathinone 4-chloroethcathinone (4-CEC) as the quenching ECL signal-response probe, the Ferrocene (Fc)-labeled aptamer folded into the conformationally limited stem-loop structure, bringing Fc near the ECL luminophore and resulting in quenched ECL emission. The quenching effect was connected with target-induced aptamer conformational changes and consequently reflected the target concentration. Under optimum conditions, the proposed biosensor realized a highly sensitive assay for 4-CEC with a large dynamic range from 1.0 × 10-12 to 1.0 × 10-6 g/L and a detection limit as low as 2.5 × 10-13 g/L. This study integrated multiple amplification strategies for efficient ECL enhancement, which provided a novel approach to constructing highly bioactive and sensitive sensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Catinona Sintética , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Limite de Detecção
10.
Inorg Chem ; 62(44): 18189-18197, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37883780

RESUMO

Recently, transition metal phosphides (TMPs) have been widely explored for the hydrogen evolution reaction (HER) due to their advantaged activity. Nevertheless, the OER performance of TMPs in an alkaline medium is still unsatisfactory. Therefore, interfacial engineering of TMPs to enhance the OER performance is highly desirable. Herein, a Co(OH)2 nanosheet coupled with a CoP sphere supported on nickel foam (NF) is developed by a simple two-step electrodeposition. The large surface area derived from stacked nanosheets and the electronic regulation induced by heterostructure can significantly enhance charge/mass transfer and expose more active sites, thus accelerating the kinetics of the reaction. In addition, the strong electronic interaction between CoP and Co(OH)2 is conducive to the generation of a high valence cobalt center; thus, the electrocatalytic performances toward HER and OER are remarkably improved. Impressively, the optimized CoP/Co(OH)2@NF heterostructure obtains an excellent HER and OER performance with low overpotentials of 76 and 266 mV at 10 mA cm-2, respectively, superior to the commercial Pt/C and RuO2. Moreover, the optimized CoP/Co(OH)2@NF can afford the lowest cell voltage of 1.58 V to achieve 10 mA cm-2 for alkaline overall water splitting and shows outstanding long-term stability.

11.
Anal Chim Acta ; 1279: 341852, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827658

RESUMO

As is common knowledge, a strong electrochemiluminescence (ECL) signal is required to ensure the high sensitivity of trace target detection. Here, a dual signal amplification strategy by integrating of perovskite and photonic crystal was fabricated for quantitative synthetic cannabinoids (AB-PINACA) detection based on Zr-connected PTCA and TCPP (PTCA-TCPP) with excellent ECL performance as luminophores. On the one hand, the co-reaction accelerator perovskite (LaCoO3) improved the effective electroactive area of the electrode and promoted the decomposition of K2S2O8, resulting in a stronger ECL signal value. On the other hand, polystyrene inverse opal (PIOPCs) formed after the swelling of PS microspheres not only taken advantage of the light scattering effect and excellent catalytic property of photonic crystals to amplify the ECL signal, but also could be used as a binder to fix LaCoO3 and PTCA-TCPP on the electrode surface to generate unprecedented ECL response and stable ECL signals. Subsequently, the detection substance AB-PINACA was loaded on the electrode surface via the amide bond with the luminophores PTCA-TCPP, thus quenching the ECL signal, so as to realize the sensitive detection of synthetic cannabinoids. Under the optimal conditions, the proposed sensor achieved highly sensitive AB-PINACA detection with a dynamic range from 1.0 × 10-12 to 1.0 × 10-3 g/L and the detection limit was 1.1 × 10-13 g/L, which had great application potential in the detection of synthetic cannabinoids.

12.
Sensors (Basel) ; 23(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687909

RESUMO

A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphosphate (ATP) as an example. A reverse detection method is used, which employs AuNPs labeling and specific DNA strand displacement. A PM monolayer-coated electrode is first covalently conjugated with an ATP-specific nucleic acid aptamer and then hybridized with another gold nanoparticle-labeled nucleic acid strand with a sequence that is partially complementary to the ATP aptamer, in order to significantly minimize the photocurrent that is generated by the PM. The resulting ATP-sensing chip restores its photocurrent production in the presence of ATP, and the photocurrent recovers more effectively as the ATP concentration increases. Direct and single-step ATP detection is achieved in 15 min, with detection limits of 5 nM and a dynamic range of 5 nM-0.1 mM. The sensing chip exhibits high selectivity against other ATP analogs and is satisfactorily stable in storage. The ATP-sensing chip is used to assay bacterial populations and achieves a detection limit for Bacillus subtilis and Escherichia coli of 102 and 103 CFU/mL, respectively. The demonstration shows that a variety of small molecules can be simultaneously quantified using PM-based biosensors.


Assuntos
Bacteriorodopsinas , Nanopartículas Metálicas , Ácidos Nucleicos , Ouro , DNA , Trifosfato de Adenosina , Escherichia coli
13.
Analyst ; 148(18): 4470-4478, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574902

RESUMO

In this work, a super-sensitive electrochemiluminescence (ECL) aptamer sensor was constructed using a multiple signal amplification strategy to realize ultra-sensitive detection of di-(2-ethylhexyl) phthalate (DEHP). The incorporation of a highly efficient electrocatalytic metal-organic framework (NH2-Zr-MOF) and graphdiyne (GDY) composite has significantly enhanced the overall electrochemically active surface area, facilitating electron transfer during the entire electrochemical reaction process, and the large number of pores in graphdiyne and NH2-Zr-MOF limited a series of redox reactions within a certain range. This resulted in the generation of a greater number of SO4˙- radicals, thereby boosting the ECL intensity of the GDY in the K2S2O8 system. To increase the performance of the sensor even further, sodium ascorbate (NaAsc) as an accelerator was added to the co-reactant system. Additionally, nitrogen micro-nano bubbles with higher stability and stronger mass transfer have been introduced into the ECL system for the first time. Based on these, the aptamer as the recognition element realized the ultra-sensitive detection of DEHP in the linear range of 1.0 × 10-12 to 1.0 × 10-4 mg mL-1 with the limit of detection (LOD) of 2.43 × 10-13 mg mL-1. In summary, we have utilized the electrocatalytic activity of the porous MOF and the reducing capability of sodium ascorbate to enhance the ECL emission of GDY, which has been successfully applied to the detection of DEHP in water samples.

14.
Mikrochim Acta ; 190(9): 373, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648847

RESUMO

Ciprofloxacin (CIP), a quinolone antibiotic, was rapidly and sensitively detected by integrating the molecularly imprinted polymer (MIP) with an ultra-sensitive electrochemiluminescence (ECL) method. g-C3N4, a typical polymer semiconductor, exhibited outstanding ECL efficiency and excellent ECL stability after combining with an iron-based metal-organic framework (MIL-101). Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the composites of MIL-101-g-C3N4 modified glassy carbon electrode (GCE). The specific sites that could target rebinding the CIP molecules were formed on the surface of MIP after extracting the CIP templates. The determination of specific concentrations of CIP could be realized according to the difference in ECL intensity (△ECL) between the eluting and rebinding of the CIP. Under optimal conditions, a good linear response of △ECL and the logarithm of CIP concentrations was obtained in the range 1.0 × 10-9 ~ 1.0 × 10-5 mol/L, with a detection limit of 4.5 × 10-10 mol/L (S/N = 3) (the working potential was -1.8 ~ 0 V). The RSD of all points in the calibration plot was less than 5.0% and the real samples recovery was between 98.0 and 104%. This paper displays satisfactory selectivity and sensitivity, providing a rapid, convenient, and cheap method for the determination of CIP in real samples.


Assuntos
Estruturas Metalorgânicas , Polímeros , Pirróis , Ciprofloxacina , Polímeros Molecularmente Impressos
15.
Biosens Bioelectron ; 238: 115551, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544106

RESUMO

The development of innovative and efficient strategy is of paramount importance for near-infrared (NIR) electrochemiluminescence (ECL) sensing, which can substantially promote ECL detection in a wide range of situations. Herein, the inner filter effect (IFE) strategy was designed to construct an ultrasensitive NIR ECL biosensor based on the well-matched AgBr nanocrystals (NCs) decorated nitrogen-doped Ti3C2 MXene nanocomposites (AgBr-N-Ti3C2) and hydrated defective tungsten oxide nanosheets (dWO3•H2O). Specifically, the AgBr-N-Ti3C2 nanocomposites displayed extremely effective NIR ECL emission because N-doping could accelerate electron transfer and boost the red-shift of the ECL spectrum. The nonmetallic plasmon dWO3•H2O was used as an absorber due to its facile tuning of the spectra overlap and higher molar extinction coefficients. Time-resolved emission decay curves proved that the decreased ECL intensity was ascribed to the IFE-based steady quenching mechanism. With the support of tetracycline (TC) aptamer and the complementary DNA chain, the fabricated NIR ECL-IFE biosensor performed a wide linear range of 100 nM âˆ¼ 10 fM with a low detection limit of 2.2 fM (S/N = 3), and it exhibited excellent stability, sensitivity, and reproducibility, so as to be applied to real samples. This strategy opens a new avenue to constructing an efficient NIR ECL-IFE system and shows excellent practical potential in actual sample analysis.


Assuntos
Técnicas Biossensoriais , Nitrogênio/química , Reprodutibilidade dos Testes , Titânio , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção
16.
Anal Chem ; 95(34): 12595-12599, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37522904

RESUMO

Self-powered electrochemical sensors, which can function without external electricity, are incredibly valuable in the realm of sensing. However, most of the present testing methods are normally confined to high environmental requirements, restricted lighting conditions, and temperature differences. Herein, an innovative self-powered electrochemical sensor was successfully developed based on hydrovoltaic effect coupling with capacitor amplification. Due to the combined merits from the two-dimensional transition metal carbides and nitrides (MXene)-polyaniline (PANI) with high surface potential and good hydrophilicity, and the capacitor amplification strategy, the device could harvest electric energy from water evaporation and displayed a high short circuit current value. Under optimal conditions, the proposed self-powered electrochemical sensor presented excellent sensitivity and high specificity for enrofloxacin (ENR) detection in the concentration range from 1 fM to 1 nM with a detection limit of 0.585 fM. Such a proposed sensor also has the advantages of environmental friendliness and ease of use, which is an ideal choice for accurately and precisely detecting ENR in real samples. The mode of such electrochemical detection outlined in this technical note implements a breakthrough in designing self-powered electrochemical sensors, providing a rational basis for development of a diversified sensing platform.

17.
Biosens Bioelectron ; 237: 115541, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37515948

RESUMO

Recently, up-conversion luminescent (UCL) materials have caught extensive sight on account of their excellent biocompatibility and weak automatic fluorescence background, but the low optical signal makes researchers shy away. Organic dye-sensitized UCL materials can improve the low optical signal drawback of UCL and rejuvenate it with adjustable optical properties and unique antenna effects. In this work, an efficient, simple and selective electrochemiluminescence (ECL) sensing platform was developed for determination of enrofloxacin (ENR). 3,4,9,10-perylene tetracarboxylic acid (PTCA) was successfully used as an "antenna" to improve the ECL performance of the UCL nanoparticles (PEI-NaYF4: Yb, Er) due to its appropriate excitation spectrum position and superior electron transfer rate. The specific recognition function of the aptamer enabled the sensor to eliminate the interference from conspecific impurity. In the presence of ENR, the specific combination of ENR with aptamer made the aptamer fall from surface of the electrode, thus we could see a considerable enhancement of signal. Under the most favourable conditions, the aptasensor based on antenna effect displayed a wide detection range (1.0 × 10-14∼1.0 × 10-6 M), low limit of detection (LOD = 3.0 × 10-15 M) and receivable recoveries (96.0%-102.4%) during water samples analysis. At this point, antenna effect provides a powerful strategy to expand the application of UCL in the field of ECL biosensing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Perileno , Enrofloxacina , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção
18.
Anal Chim Acta ; 1273: 341557, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423650

RESUMO

Exploring efficient strategy for high-efficiency photoelectric conversion is quite important to design sensitive self-powered photoelectrochemical (PEC) sensing platform. This work designed a high performance self-powered PEC sensing platform by the integration of piezoelectric effect with localized surface plasmon resonance (LSPR) effect based on ZnO-WO3-x heterostructures. Due to the fluid eddy induced piezoelectric effect by magnetic stirring, the piezoelectric semiconductor ZnO nanorod arrays (ZnO NRs) can facilitate the transfer of electrons and holes by generating piezoelectric potentials under external forces, thereby contributing to the performance of self-powered PEC platforms. Such working mechanism of the piezoelectric effect was studied by using the COMSOL software. Moreover, the introduction of defect engineered WO3 (WO3-x) can further broaden the light absorption and promote the charge transfer owing to the nonmetallic surface plasmon resonance effect. Remarkably, due to the synergizing piezoelectric and plasmonic effect, the photocurrent and maximum power output of ZnO-WO3-x heterostructures were enhanced by 3.3-fold and 5.5-fold than that of bare ZnO, respectively. After the immobilization of the enrofloxacin (ENR) aptamer, the self-powered sensor demonstrated an excellent linearity (1 × 10-14 M to 1 × 10-9 M) with a low detection limit of 1.8 × 10-15 M (S/N = 3). This work undoubtedly holds great promise to provide the innovative inspiration for the formation of high-performance self-powered sensing platform, which opens up a new horizon of potential in food safety and environmental monitoring.

19.
Inorg Chem ; 62(31): 12590-12599, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37480341

RESUMO

In this paper, Pr0.7Sr0.3Co1-xRuxO3 perovskite oxides were synthesized by the sol-gel method as bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotentials of PSCR0.05 against HER and OER at 10 mA cm-2 were 319 and 321 mV in alkaline medium, respectively. The Tafel slopes of HER and OER were 87.32 and 118.1 mV/dec, respectively. PSCR0.05 showed the largest electrochemical active area, the smallest charge transfer resistance, and excellent long-term durability. Meanwhile, the PSCR0.05 electrocatalyst was applied for overall water splitting and its cell voltage was maintained at 1.77 V at 10 mA cm-2. The super-exchange interaction between adjacent RuO6-CoO6 octahedra in perovskite made of PSCR0.05 contains sufficient active sites (such as Co2+/Co3+, Ru3+/Ru4+, and O22-/O-). The increase of surface oxygen vacancy and active site is the main reason for the improvement of difunctional catalyst performance. In this work, the electrocatalytic performance of perovskite-type oxides was further optimized by the method of A- and B-site cationic doping regulation, which provides a new idea for perovskite-type bifunctional electrocatalysts.

20.
Anal Sci ; 39(9): 1465-1473, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37280484

RESUMO

The presence of cuprous ions in the copper-dissolving solution significantly affects the microstructure of copper plated surface. Fewer quantitative analyses of cuprous ions in the copper foil productive process had rarely been involved so far. In the present work, a novel electrochemical sensor of the bathocuproine (BCP) modified expanded graphite (EG) electrode was developed for the selective determination of cuprous ions. EG has a large surface area, good adsorption, and excellent electrochemical performance which remarkably promoted analytical sensitivity. Meanwhile, the selective determination of the BCP-EG electrode for cuprous ions in the coexistence of ten thousand times of copper ions have been achieved on the benefit of the special coordination of BCP to cuprous ions. In the coexistence of 50 g/L copper ions, the analytical performance of the BCP-EG electrode for the determination of cuprous ions had been examined. The results represented a wide detection range of cuprous ions in the range of 1.0 µg/L-5.0 mg/L, with a low detection limit of 0.18 µg/L (S/N = 3) and the BCP-EG electrode has great selectivity to cuprous ions in presence of various interferences. The analytical selectively for cuprous ions supported by the proposed electrode would be a potential analytical tool for quality improvement in electrolytic copper foil manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...